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1. INTRODUCTION AND SUMMARY

1.1 Objectives of Study

The area of research to which this study relates is that of pattern
recognition and in particular, the automated recognition of objects
irrespective of the location, orientation and magnitude of such objects
in the field of view of the "observer".

A new type of Associative Memory (AM) had been proposed and explored
previously by the principal investigatiézand the overall objective of
this study was to determine the feasibility of using this Associative
Memory Technique in this context to surmount the problems of location,
orientation and scale in automated pattern recognition.

One specific objective was to study certain characteristics of the
Associative Memory technique which are of particular importance to this
application, including, memory capacity, use in hierarchial form, and
use for interpolative prediction of attribute values.

Another specific objective was to implement the interfacing of CCD
and/or conventional Vidicon television cameras with computers in order
to provide convenient means for acquisition of patterns for input into
computer memory for use in the Associative Memory studies.

Yet another specific objective was to indicate how such Associative
Memories might be configured in realistic systems for automated tracking
of objects, with capability of coping with changes in position, orienta-

tion and relative size of the objects, without the need for human

intervention.

™




In this work, the basic approach has been to consider storing a
moderately large number of patterns in a multiplexed manner in a single
memory without regard to a certain amount of degradation of information.
The aim is to span pattern space sufficiently well albeit coarsely so

that "recognition" with one of such memories suffices to place the

: pattern reasonably accurately within a (large) volume in pattern space.
Successive use of a hierarchy of similar memories suffices to define the
pattern progressively more accurately.

For this approach to be of practical interest, it is necessary that
the technique be demonstrably faster and more economical in use of

i memory capacity relative to other known pattern recognition techniques.

1.2 Summary of Work Done and Results Obtained

The work done can be classified into three categories, these being:

* Investigations of certain basic characteristics of such
Associative Memories when implemented for pattern recognition,

* Implementation of a solid state 100x100 CCD sensor television

camera and computer interface and also ©f a full resolution
! Vidicon television camera computer interface, both suitable
for acquisition of patterns,

* Use of the solid state CCD array camera and the Associative

s

Memory to deal with specific problems of position, scale and
| ; orientation in pattern recognition.

' Although some interesting work remains to be done, the work done

in this study show that:

Lt S




* Many patterns can indeed be stored in a multiplexed manner
in a single Associative Memory so that any incident pattern
can be simultaneocusly compared with all of the stored patterns
in a parallel processing manner and can be recognized as being

most like one of the stored patterns.

* The maximum number of such training set patterns which can be
stored in an overlaid, or multiplexed, manner without causing
an error in the recognition process is called the Memory

Capacity, Nc. i

* If the pattern presented for recognition is restricted to being

one of the training set, then the Memory Capacity, NC, can be

a large fraction of the dimension of the memory. For example,
for patterns consisting of 64 pixels, 11 patterns can be stored

in an overlaid manner and can be recognized without error. Such

procedures provide the basis for enormous savings in processing
time and computer storage space.

* For circumstances where interpolation and prediction of attri-
butes are required the number of patterns which can be usefully

stored is generally smaller than Nc, being typically about 0.75Nc.

* Memory capacity also depends upon how dissimilar the stored
patterns are. Memory Capacity increases with the Hamming

- Distance between the patterns stored.
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The tendency of such memories to group nearly alike patterns

together can be exploited to carry out recognition by succes-

sive applications of such memories. The first step might be

to assign the detected object into one of a few course cate~-
gorizations. Successive applications provide finer discrimina-

tion and finally conformed recognition as being a specific type

of object with detailed characteristics.

The basic Associative Memory technique is described in Section 2.
Results of investigations of Memory Capacity are described in
Section 3 and the use of such memories for interpolative estimate

of attribute values is discussed in Section 4.

The 100x100 compact CCD image sensor developed and used for providing
high speed pictorial input to a computer system for pattern recog-
nition research is described in Section 5, together with brief
mention of a full resolution system using regular television cameras,
and magnetic disc storage and a time base expander.

Use of the combined CCD video system and the Associative Memory for
recognition of objects regardless of position, scale and orienta-

tion is described in detail in Section 6.
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2. THE ASSOCIATIVE MEMORY TECHNIQUE

2.1 A Qualitative Discussion of the Underlying Concepts

Consider for example, a simple, highly stylized, two dimensional
view of a vehicle in silhouette. For a human, such a depiction would
be easily recognized as such regardless of changes in the size, loca-
tion or orientation of the truck silhouette. An automated recognizer
working without human intervention could do the same but would have to
work quite hard at the task having to resort to such measures as com-
puting the gradient along the contour and/or computing many moments of
the object in order to be able to decide whether a vehicle had been
detected. The task is even more difficult if internal details are also
important and if several different types of objects are of interest.

An alternate approach to the task of recognizing objects regardless
of location, orientation and scale would be to store patterns repre-
senting all possible combinations of such variables and to compare any
incident pattern with all such possibilities. 1In general this alternate
approach is not practicable because of the very large numbers of patterns
required to cover all eventualities and because of the excessive memory
capacity requirements and long processing time.

The Associative Memory technique approach to surmounting the problems
of location, orientation and scale amounts to adopting the generally
discredited latter approach, relying on several characteristics of such

Associative Memories to overcome the otherwise unacceptable large memory

)

and processing time requirements.




One of the principal concepts consists of storing several patterns

in an overlaid, multiplexed, manner so that all of these stored patterns

can be compared with any incident pattern in one simultaneous operation.

Not only is there savings in storage space but there is no need to fetch

stored patterns for comparision, carrying out the comparison, storing

the results and then fetching the subsequent pattern and so on. In this
manner, the incident pattern can be compared with larger numbers of
patterns in any given time interval.

Another characteristic of such memories is that it is fortunately

"fuzzy" in just about the right manner, in two aspects. First of all,

it can be arranged so that only objects which are greatly dissimilar are ;

R

recognized to be different. Thus in a first detection stage, it is not :

F . important what the precise nature of the object is but it is merely
recognized to be present in a certain quadrant. Secondly, it is not

important that all locations and sizes and orientations be represented,

since the memory allows for interpolation between key patterns. In this
% manner, the number of patterns representing different combinations of
size, orientation and location can become manageable.

Further details of the technique can best be discussed quantitatively.

2.2 Mathematical Formulation of Basic System

The basic Associative Memory technique is described in this sub-

T e e -

section.
This subsection also includes a description of notation
and of definition of binary vector operations resulting in vectors

(vector sum and vector product) or scalars (inner product). First, the
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pattern vectors and constraints on them are defined. Next the associated
references are introduced and the associative memory is constructed.
Finally, the recognition technique is defined and compared to template
matching (correlation). For this comparison, a memory capacity is de-
fined for the associative memory.

Notation. A vectnr will be represented by an upper case alphabatical
symbol. The components of a vector will be denoted by corresponding lower
case letters. These upper case vectors and lower case components may
be subscripted. Thus the kth component of the vector X is x . However,

k

the kth component of the vector Zj would be written as xjk'

Binary Vector Operations. Vector sum, vector product, and scalar

product definitions follow. The vector sum S = X + Y of two vectors X
and Y (S,X,Y all K dimensional) is the usual operation with the components
being given by

Rt e (25200

The vector product P =X Y is defined by the rule that the com-
ponents of P are obtained by simple componeht by component multiplication

of the vector multiplier and multiplicand X and Y, namely

(2.2.2)

<X Y» = I %Y (2.2.3})




Pattern Vectors. 1In this method, the patterns are coded into

vectors, the components of which are binary valued, being + 1. Typically,
N such pattern vectors would be stored in an Associative Memory. In K
dimensional space, each of the pattern vectors, Zn (n=1,...,N), would

3 th th :
have K components, with the k compoonent of the n vector being denoted

X . These vectors are all of the same length in the sense that

1

nKk

<X > = K (2.2.4)
TN

and therefore may be considered as normalized.

Reference Vectors. A set of orthonormal basis vectors spanning the

M dimensional pattern space is used as reference vectors in the construc-

tion of an Associative Memory and in the recognition process. In addition,
if this memory is to be implemented in software, it is necessary that
there exist a fast discrete transform algorithm with respect to represen-
tation in terms of these orthonormal reference vectors. Walsh functions
satisfy all these requirements and are often used as reference vectors in
this work. Other equivalent sets may also be used as appropriate.

Associative Memory Construction. In this technique, each pattern

vector is multiplied by a reference vector and the vector product is
stored.
For one pattern X and the associated reference Y we have the
memory
- Fe (2.2.5)
This one pattern memory has the property that multiplciation of M by
X represents Y exactly, i.e.,

XM = ¥ (2.2.6)




For a single pattern stored, each component of the memory vector

M is also binary valued, + 1.

In this technique, storage of many patterns is achieved by adding
the pattern~reference products cumulatively, so that although the memory
M of N patterns remains a K component vector, the components are no longer
binary valued but may have any value between + N.

For N patterns stored, the memory M is given by

(N)

Y (2.2.7)

and each of the components of M is given by

(N)

o L & xn,kyn,k (B peait

Recognition. Recognition of an unknown pattern Kj is carried out
in two steps. The first step consists of multiplying the memory E(N)
by Kj to form the pattern memory product. In the case of a single stored
pattern, the associated reference Xj would have been recovered and this
would conssitute recognition of the pattern being Ej' In the case of N
patterns, if gj is a member of the training set, i.e., one of the stored
patterns, then the pattern memory will be primarily Xj together with

"noise".

pl .S
For E(N) h) ann (2 9)
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and is obtained by using the Fast Walsh Transform algorithm.
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It is seen that in this case the associated reference Xj is not recovered |

with unit coefficient, the noise term being I <X.X X Y.> Y.. In addi-
n#3 Sj=0g s =)

tion, the coefficients for all the other Walsh functions do not vanish :
either. In this method, of all the k Walsh functions, we are interested
only in those which were used as references. 1In the third term in equa-

tion (2.2.12), for each Xk'

= < > + > e y
., ' Ck éjzk Zk z <X XYY Y (2.2.13) :
n=1 i
n#k :
and it is seen that Ck for n # k carry information also. The k=n term

is in essence the cross correlation between patterns Zn and Ej' while

the k # n sum represents the noise.
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In practice, members of the training set can be recovered exceedingly
well and the real utility of this technique goes beyond that straight-
forward step.

Of greater importance is the performance of the technique when it
is used to estimate the values of attributes of patterns other than those
of the training set.

Estimation of attribute values constitutes the second step of the
recognition process. Namely, if for gn, the members of the training

set, the value of the attribute A(l) are Aél) , then the expectation

value of A‘l) for pattern zj is predicted (or estimated to be)

< A(l)>. = L BLE(CD) A(l) (2.2.14)
Jj & n n

where f(Cn) denotes some nonlinear functional of the coefficients Cn'

Memory Capacity. The memory capacity Nc is defined as the largest

number of patterns which can be stored in the memory without errors in
the recognition of members of the training set.
The foregoing discussion indicates that there is no error at all
when only one pattern is stored in the memory M(N) (N=1) . Further storage
of pattern information in the memory in the multiplexed manner peculiar

to this technique, degrades the reconstructed reference Xj with the noise

term I < X.X Y Y.> Y.. This noise term increases with increasing N,
n#j 5 A 2 8 < i M

and causes errors intrinsic to this process to occur as the memory capa-
city is exceeded.
Present incomplete results indicate the Nc depends not only on the

dimension of the pattern space but also on the average Hamming distance
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between patterns, as evaluated over the set of training patterns.

A comparison with template matching pattern recognition gives some
insight. For each incident pattern Ej' template matching requires KN
operations to form the N correlation coefficients <§j §n> , where k is
the dimension of the pattern space and N is the total number of patterns
in the training set. The associative memory technique uses K(1+L092K)

operations, K to multiply Ej and M and KL092K addition/subtractions

(N)

for fast computation of the Walsh representation of gjﬂ_ . Thus when

(N)

N<l+LogzK, template matching is faster. Conversely, associative memory
techniques are faster when N>l+Log2K. However for N > Nc, the memory
capacity, a single associative memory technique suffers from intrinsic
errors. Thus for K = 512, any value of N above 10 represents advantage
for the Associative Memory technique. Experimentally it has been deter-
mined that for K = 512, Nc can be about 36, representing an advantage

of 36 to 10. For K = 64, Nc is about 11 representing an advantage of

about 11 to 7.

2.3 Additional Features and Options

One of the principal obstacles to general application of the
technique described in subsection 2.2 is the requirement that the com-
ponents of the pattern vector be binary valued. The state of a system
can indeed be represented by an array of numbers but in general they
will not be binary valued. So far, preliminary results indicate that
there are three ways of coping with this aspect of the technique.

The first method consists of relaxing the requirement that the

components be binary. The method does work but the "noise" is generally

SONRVETRVES
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greater and much of the mathematical niceties is lost.

The second method consists of representing an integer valued
component by an appropriate number of +1 values with zero being repre-
sented by those spaces all being filled with -1. This method is ob-
viously only suitable for pattern vectors when components are small
integers.

A third method is suitable for use with any general pattern vector
and consists of representing each decimal digit of a real number as a
positive (or negative integer) using the coding of the second method.
However in the recognition process, before the Walsh transform is carried
out, the pattern-memory product is multiplied by a masking pattern P
which assigns a weight of 100 to bits representing the decimal digit in
the 100 place, a weight of 10 to bits representing the decimal digit in
the 10 position and so on.

Use of this last method results in using 30 bits for representation
of a three digit decimal number and is consequently very wasteful. How-
ever this seeming expansion in dimensions results in increased multi-

plexing and consequent savings in memory storage needs and processing

time.
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3. MEMORY CAPACITY INVESTIGATIONS

For each value of K, the dimensionality of the membry, sets of
patterns were generated in the following manner:

* A randomly generated sequence of K bits is used as base

pattern.

* Other patterns differing from the base pattern by a specified

number of bits are generated by changing the required number
of bits, care being taken to see that the entire set of pat-
terns so generated are not only the specified Hamming distance
away from the base pattern but are at least that same distance
apart from each other.

These patterns are progressively stored in Associative Memory and
recognition of these members of the training set is tested until at
some stage, a mistake is observed. The number of patterns stored at that
stage is defined to be the memory capacity, Nc'

For each value of K, and for any one set of such patterns, the
memory capacity can be optimized by appropriate choice of the references
associated with the patterns. A generally effective procedure is to
choose the references uniformly spaced to scan the entire sequency space.
A more precise optimization procedure consists of examining the "power
spectrum" in sequency space and varying the references so as to obtain
minimum overlap of the spectral contributions from the various patterns.
Memory capacity results are listed in Table 3.1 and also shown plotted
in Figure 3.1 together with some values which indicate the advantages

this method have relative to straightforward template matching.
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4. RECOGNITION ACCOMPANIED BY INTERPOLATIVE ESTIMATION OF ATTRIBUTES

This type of mamory would be of limited utility if applications
were limited to correct identification of members of the training set
and happily this is indeed not the case.

The ability to carry out "recognition" in the sense of being able
to provide a correct estimate of the value of an attribute was demon-
strated in two contexts.

In the first context, a set of patterns each consisting of twelve
integer valued (0 ~ 5) features were assigned attribute values. This
body of data originated in a medical context and in fact it is not known
whether the attribute values so assigned are entirely self consistent.

For one set of such patterns, each pattern was coded into a sequence
of 41 binary valued components and the sequence was repeated m times to
fill a space of dimension K. (m = 3 for K = 128, m =6 for K = 256).

For one set of patterns, for K = 128, eight patterns were stored
in memory and then used to provide recognition for the remaining
available patterns. The patterns, assigned attribute values and esti-
mated attribute values are shown in Table 4.1 and it is seen that the
performance is very good, the root mean square error being about 0.6%.

Similarly for another set of such patterns, using K = 256, the
corresponding patterns, assigned attribute values and estimated values
are shown in Table 4.2 and it is seen that performance is again very
good with the root mean square error being on the order of 0.5%.

In a sense, these good results are not entirely satisfactory since
it is not known whether the assigned attribute values are self consis-

tent. This is to say that it is not known whether there is one metric
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to the pattern space or whether at the minimum the metric is a function
of space distorting perhaps in a smooth and continuous manner depending
on position in the multidimensional pattern space. It is suspected
that the latter case is more nearly correct and the demonstration
of correct recognition is also a demonstration of the ability of this
memory to accommodate this feature of the task of pattern recognition.

In another instance, the capability of this type of memory to
"recognize" patterns other than those in the training set, is demon-
strated more unequivocably.

In this second instance, each of the patterns consisted of two
pulses at a specified distance from each other. With a certain number
of such patterns stored, the question was whether any new pattern could
then be recognized in terms of the interpulse distance being estimated
correctly.

The pulses used for formation of one of such memories are shown

plotted in Figure 4.1. Comparison of estimated and actual interpulse

distances are shown plotted in Figures 4.2 and 4.3.
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S, IMPLEMENTATION OF VIDEO SYSTEMS FOR USE IN COMPUTER PATTERN

RECOGNITION AND AUTOMATED TRACKING

In support of the theoretical work of this program, a video system
was developed consisting of a solid state CCD TV camera (using the Fair-
child CCD 202 array with 100x100 sensor elements), camera lens (zoom),
pan and tilt servocontrols, level shifters required for CCD operation,
television minotors, A/D and D/A converters, digital memory and a CAMAC
interface. Although considerable ingenuity was displayed in that aspect
of work and although the system so implemented is quite versatile and
suited to general pattern recognition and automated tracking work, it
is not useful to go into details of that work in this report. Such
details can be found in a CWRU Master's Thesis (1977) by Kenneth J. Lauer.

In essence, using that system, it is possible to "snatch" a frame
of a scene and to display the snatched frame on a regular T.V. monitor
as well as to feed the information to a computer memory for processing.
Computer generated tracking signals can be fed back to servos for auto-
mated tracking of any recognized object. A block diagram of the system
is shown in Figure 5.1 and a view of the system is shown in Figure 5.2.
Some performance characteristics of the system are shown listed in Table
5.1. Other demonstrations of the capabilities of the system are provided
by printer output exhibited in Figures 5.3 and 5.4.

Another such system using full resolution Vidicon television cameras
rather than CCD arrays was also developed in our laboratories with partial
support from this project. A view of that system is shown in Figure 5.5
and system specifications are listed in Table 5.2. Further details are

available from CWRU Master's Thesis (1978) by John W. Allen.
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In this latter case, customary full 512 line resolution is avail-
able and storage is achieved using a magnetic disc. A time base ex-
pander provides interfacing between the video rates of data acquisition
and the somewhat lower rate of data acceptance by computer memories.
Higher resolution and multipattern storage capability is gained at the
cost of large overall size and greater vulnerability to mechanical
disturbances.

The CCD system has been used extensively in this present program
and the multipattern magnetic disc/time base expander system is now

also available.

6. USE OF ASSOCIATIVE MEMORIES FOR SURMOUNTING PROBLEMS OF LOCATION,

SCALE AND ORIENTATION IN AUTOMATED PATTERN RECOGNITION

The results reported in previous sections indicate that the pre-
liminary steps necessary for carrying out the principal investigation
had indeed been implemented successfully. Namely, under appropriate
conditions the associative memory technique does work satisfactorily
and the television sensor/computer/servo pan-tilt zoom system also
works well.

Given the capabilities so described, those two components were
combined to provide for capability to achieve detection and recognition
of an object regardless of variations in location, scale and orienta-
tion. The results of that investigation are reported in this section.

Two types of objects were presented for recognition by the tele-

vision sensor/associative memory system. Recognition was carried out

using a hierarchy of three associative memories.




L ! The function of the first Associative Memory was to locate the

; object and to pan and tilt the television camera so as to center it.
The Associative Memory was constructed from nine patterns consisting of
a dark square against a light background. The dark squares in each pat-
tern were positioned so that when all nine were overlayed their composite
would resemble a tic-tac-toe board. Each pattern was assigned attri-

1 butes corresponding to its x and y displacement from center, i.e., the
center pattern had attributes (0,0), the lower right corner had attri-

butes (8,-8).

To economize on processing time, the information (dark or light)
in only one out of every three pixels was retained and the 32x32
picture so obtained was presented for recognition by the Associative
Memory. The results presented in Table 6.1 clearly show that in a
circumstance such as that described here, this system is capable of
detecting the dark object and estimating the location of the object.

The performance is estimated to be faster and superior to that of
optical contrast trackers. (See Figure 6.1 for a graphic illustration.)

After the servo'd camera had centered the object, the size of the
object is determined readily using approach as that described above.

In the third step, the centered and properly ratioed object was
presented for recognition by an Associative Memory made up of the patterns
exhibited in Figure 6.2. Recognition of the object regardless of orien-
tation was achieved as shown by the results exhibited in Table 6.2.

Feedback and confirmation could have been achieved with the use of

a dove prism but this final step was not implemented in this study.




-

.-

20

y CONCLUSIONS AND RECOMMENDATIONS

The experience accumulated in the course of this investigation
indicates that the Associative Memory technique is clearly suitable
for automated pattern recognition and that problems of location,
scale ancé orientation can be surmounted with this technique. However,
it was equally clear that straichtforward naive implementations
generally were not sufficiently immune to noise Or to confusion
produced by unexpected objects.

Successful systems need to be implemented with tiers of Associative
Memories, including provisions for confirmation, feedback, recovery from
misidentification and also adaptivity.

It is recommended that systems capabilities of hierarchical arrange-
ments of such memories be investigated with a view of determining whether
such systems are ideally suited for implementing distributed intelligence

in complex systems.

8. PUBLICATIONS AND PRESENTATIONS

M.S. theses and Ph.D. dissertation investigations supported in part
by this project are:

Kenneth John Lauer, M. S. Thesis, May 1977, "Design and Development
of a Solid-State Video System for Use in Computer Pattern Recognition
and Automated Tracking".

Jeffrey Lynn Altman, Ph.D. Dissertation, August, 1977, "Pattern

Recognition Using Associative Memories".
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William L. Schultz, Ph.D. Dissertation, in preparation, scheduled
for May 1973, "Characteristics and Applications of Distributed Associa-
tive Memory Algorithms (With Emphasis on Pattern Recognition and Automated
Image Processing.)"

John W. Allen, M.S. Thesis, in preparation, scheduled for May 1978
"Design and Implementation of a Video Buffer Memory with Time Base
Expansion/Compression Capabilities™.

During the funding period of the grant, numerous seminars were
given by Professor Yoh-Han Pao.

Public lectures by Professor Yoh-Han Pao include: 4

"Use of Associative Memory Techniques in Implementation

of Multivalued Logic Systems", invited paper at the Sixth
Annual International Symposium on Multiple-Valued Logic,

May 25-28, 1976, Logan, Utah.

"On the Use of Associative Memories for Pattern Recognition
and System Control" at the Electric Power Research Institute
Parallel Processing Conference, Palo Alto, California,

November 1977.
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°
° PROCESSING RATE
ADVANTAGE |
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|oo - 3 1 1 . | ) _ :
10! 102 103 Tol

DIMENSION OF MEMORY K

FIGURE 3.1 MEMORY CAPACITY OF ASSOCIATIVE MEMORY AND
USE ADVANTAGE RATIOS.
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Figure 4.1 PATTERNS USED AS TRAINING SET IN ESTIMATION OF
INTERPULSE DISTANCES (9 MEMBER TRAINING SET).
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FIGURE 5.5

FULL RESOLUTION COMPUTER VIDEO INTERFACE
USING MAGNETIC DISC, ANALOG RECORDING,
AND TIME BASE EXPANSION/COMPRESSION.




(a)

(b)

(c)

FIGURE 6.1 ILLUSTRATION OF AUTOMATED TRACKING BY SUCCESSIVE
RECOGNITION OF OBJECT
a) Original position
b) After one coarse correction

c) Final position after two additional
successive corrections




FIGURE 6.2 TRAINING SET PATTERNS USED FOR RECOGNITION
TYPE OF TANK REGARDLESS OF ORIENTATION.




TABLE 3.1

MEMORY CAPACITY OF ASSOCIATIVE MEMORY AND
USE ADVANTAGE RATIOS

Advantage of Technique

(1) (2) (3

Memory Hamming Memory In Storage
Dimension Distance Capacity Requirement
K Nc NC/LOg2Nc
32 5 4 2
10 4 2
15 6 3
64 10 5 1.6
20 9 225
30 12 3
128 20 8 2.6
40 12 3
60 14 355
256 40 10 2.5
80 21 4:2
120 23 4.6
L B G 80 16 4
160 30 6
240 32 6.4
1024 430 47 18
2048 960 64 10.6

4096 1920 107 15.3

(4)

In Processing
Rate
N K
C/L092

12.6




3.1 Footnotes:

Minimum Hamming Distance Between Patterns in Memory.
Memory Capacity - Number of Overlaid Patterns Stored

and Retrieved Without Error.
Storage Capacity Advantage = (Requirement of Template Matching
Technique/ Requirement in Associative Memory Technique) =
KNC/KLogzNc = NC/LogzNc
Processing Rate Advantage = (Number of Operations in Template
Matching Technique/ Number of Operations in Associative Memory

Technique) = KNC/KLogch = NC/LogzK

This comparison does not take into account the additional advan-

tage due to the fact that NC patterns are stored in place in the

Associative Memory method and Nc "fetch and store" operations are

avoided in processing. That advantage is substantially larger than

those values listed in Table 3.1.
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TABLE 4.1

INTERPOLATIVE ESTIMATION OF ATTRIBUTES USING
SOME PATTERNS GENERATED IN A MEDICAL CONTEXT.

CATEGUORY 1.

TENTATIVE PATIENT ASSESSMENT ASSIGNED COMPUTED DIFFERENCE
DIAGNOSIS FPROFILE SEVILL SEVILL
21 11290 000 0 0B 0 0 150 156. 04 -6, 04
21 12016001 00 000 180 166. 74 13. 26
21 QEZEON0 00 1 0] 000 170 153, 25 B6. 7D
21 120080 08001 0 OO0 130 161. 13 13. 37
21 T2 0N a0 0500 220 239, 69 =19 950
21 1200060101000 22 156. 45 53. 55
21 202000 0 L 001 0t ] Z90 242 32 47. 18
21 2 200000 1 1010 290% 307. 38 =17 =8
Z1 220 120025080 0508 290 367.13 =77. 13
21 0 2 0 1 080 Z 1 100 080 270 277. 43 L 257
21 220020101 0000 290 213. 24 76. 76
21 220100021000 220 233. 10 1.°90
21 122010010000 Z20%# 234. 03 S, 2T
21 22 20150 0 1-0 0800 215 317. 33 =2, 33
21 22 91 ZEe 2t 0N 0N G 335 407. 20 ~72. 30
21 4 Q22 1 OROEZEO T 00 400# 406. 00 -6. 00
21 220020105010 400 424. 45 -24. 45
21 4 22100200030 440 473. S4 -33. 54
21 42001 2102 1 2010 450# 447. 13 2.37
21 440120111010 450# 449 32 0. &3
21 420024101010 475 447. 16 27. 34
Z1 2 S e e S o 7 o 1 (e 0 B ) 423 413. 52 & 43
21 403000111030 S00#%# 499. 17 0. 33
£t 4 0 2822 LN g ] 4735 435. 05 39. 95
21 403120221010 SSO* 529. 74 20. 06

RMS ERROR: 39 .

N
o

* INDICATES A TRAINING SET PATTERN

BEST AVAILABLE COPY
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TABLE 4.2

ADDITIONAL RESULTS DEMONSTRATING INTER-
POLATIVE ESTIMATION OF ATTRIBUTE VALUES.

CATEGORY 3.

TENTATIVE PATIENT ASSESSMENT ASSIGNED COMPUTED DIFFERENCE
DIAGNOSIS PROF ILE SEVILL SEVILL
s 4 000000000 O0OOO Sa 23 95 -18. 95
: 3 C0O000CO0DO0O00O0O0 s 23. 95 -13. 95
3 0001000000CO0O0 10 25. 81 -15 &1
20 1 000D0000D0OD 7 30. 54 -23 S4
3 s 100000000 0DD 7 30. 54 22 5
7 100000000000 7 20. 54 -23 S
& 100000000000 7 30. 54 -23. 54
10 100000000000 7 30. 54 ~-23. 54
8 O00000100O0O0O0 20 4% 70 -29. 70
4 0O000CO0O1000CO0O0 S 4%. 70 -34.70
3 CO0O00O001000O0O0 5 4970 -34. 70
3 OO00O0OCOLrtDOOD 10 34. 66 -24 46
s 100100000000 10 31. 95 -21. 95
e 10010000000 O0 10 31. 95 -21. 95
& CDO0O100C300DO0D 15 SS. 75 -40. 75
2 000100100000 Z20% SS. 75 -35. 75
& 000100010000 15 44 &2 -2%9. &2
8 100000010000 30 39. 36 -9 3¢
& CO0000000100O0 20 32. 94 -12 94
& 0O0O0OO0O0CO0001000 30 32. 94 ~-2. 94
& OO0OO0OO0OO0CO0D0O1 0OOO 30% 32 94 -2 94
5 1001003100000 40 64. 57 -24. 57
A 1001500300000 40 64. 57 -24 57
p 1006100100000 40% &64. 57 -24. <
& 100100010000 40 45 45 -9 45
& COO1OODLIOCDO 1 &0 8z. 35 -22 3§
7 PO oL OO 1L 1TOO0OD 40 z. 13 -4 13
& 100100000010 40 S56. 70 -16. 70
: & 100000001000 25 40. 40 -15. 40
¢ & 106060001t 100060 30 6S. 77 -35 77
g 1000000266000 40 49 53 -5 53
e {1 00100300001 &0 §4. 55 -24 55
8 1001000031000 40 43 1% -3 18
6 1 0030000000 S0 4z 1§ 6. 82
31 00100300010 75 115. 37 -40. 37
5 100000003010 60 55. 07 4 93
g 100100101000 S0 73. 48 16. 52
g 19030021000 DH 110% 113 8% -3 8%
6 100100001010 75 84. 95 -9. 95
8 1 001000031010 90 84. 95 S. 05

BEST AVAILABLE COPY

N en




CATEGORY 3. (CONTINUED)

TENTATIVE
DIAGNOSIS FROFILE

0

)

N~ ONODH N ==~ 0UNGC O

W

QWOCON-UNN

(]

== NOOHrONOORrOrRrOrr O OO0 OQCQOO0OrrOr e
[oXeReXoRoReRoRoloRoRoRoNoNoRoloNoNoNoNololoNoNoRoNoRoRoRo o]
feR>ReoReRoRoRoRoRoNoRoleNoNvioNoNoNoNoNoNoNoNeoNoRo oo oo oo/
b bt s e bt e O b bt et O bt s bt b pa ba pa pa e O O Ot e OO
N=Or-NO~OOOOOO0O0Q0O0OOOOOOOO»OOCOOOO
WWNWWWWRWOWWWWWWOWOoOWWWWWWOOoONOOO

OCONFHOOONNPP,PrORNOROOO OO ONRP=
NNrNE~= -~ ONFROOOONOPOrOCOOO0OO0OONO-

W

RMS ERROR: 30.

w
-

# INDICATES A TRAINING SET

TABLE 4.2

PATIENT ASSES

39

IMENT

=N~ QOO OO0OO0O0O0O0O"O0O0OOO0OO0OOCOO+OO~~O
Q0000 COO0O000COO0COOCOCOOOCOCOCOOCO0OO0O0OO0
e b bt bt bt O (WO O OO OWHR OO OO ~OO O
=~ 000" 00COCO0O0O0O00COOOOCOOOOCOOCOO

PATTERN

(CONTINUED)

ASSIGNED COMPUTED DIFFERENCE
SEVILL

129
115S»
110%
150%
150
125
115
160
175
175
120
170#%
120
250#
225
200
229
225
2320
Z35%
205
PAG
S00#
235
ZSO*
310
300
375%
400#
400
SOO*

SEV

143

74.

88.
135.

77.

30.
154.

3.
146.
121.
135.
165.
173.
232.
131.
2085.
136.
200.
217.
204.
222.
130.
27S.
250.
236.
24S.
233
345S.
336.
450.
433.

ILL

.44
01
s2
20
52
a7
63
37
13
53
22
36
60
24
44
65
75
22
S5
73
36
93
26
79
05
b6
36
&6
1y
96

~13.
40.

21.

14,

72

=

=

—39,

71.
23.

=
P IS B

4

24,

10.
17.

43.
. 65

-5
33.
24.
12,
30.

-17.
34,
24.

-15.
13.
64.
6.
29.
63.

-50.
i1,

11
79
43
30
43
a7
&3
03
32
4z
73
14
40
06
S6

05
73
45
27
36
02
-4
33

L

28

24
14
34
17
04

BEST AVAILABLE COPY

— oI
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TABLE 5.1

SYSTEM SPECIFICATION OF CCD CAMERA
COMPUTER VIDEO SYSTEM

Overall System Specifications

Major

Solid state CCD TV camera sensitive to light levels
from 10 to 1000 foot-candles (visible spectrum.)

CCD image sensor array consisting of 100x100 elements
(pixels).

Video data rate of 30 frames/second synchronized to
standard video systems.

Camera-to-computer distance of up to 500 feet.
Standard TV monitor display of input scene.

Computer control of camera pan, tilt, zoom, focus,
iris for automated tracking.

Computer controlled picture digitization.

Digitization of each picture element to 16 gra§ levels.
2500 words of 16 bit memory to hold one picture.

16K dual port semiconductor buffer memory for video data.
Standard TV monitor display of scene in buffer memory.
Random or sequential memory access by host computer.

Capability to load buffer memory from computer to display
computer generated scenes.

CAMAC computer interface.

Components

CCD image sensor camera. |

Camera lens, pan, and tilt servos.

Level Shifters required for CCD operation.
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Major Components (cont'd)

Television monitors.
Analog-to-digital converter.
Digital memory.
Digital-to-analog converter.

CAMAC interface.

CCD Image Sensor Camera Specifications

100% dynamic range capability for 1light levels from
10 to 1000 foot-candles of reflected illumination
(visible spectrum).

100x100 array of image sensitive elements.

Flexible operating rate to allow for synchronization
to standard video system scan rates.

16 gray level accuracy between input illumination and
corresponding output voltage.

Minimum of 15 db signa/noise ratio,
analog video signa/digital shifting
coupling noise.

Maximum of 5% output nonlinearity between
cells.

Maximum of 100 millivolts of dark noise @ 20°C.

Zoom Lens Specifications

Operational
Zoom Speed: 4 to 20 seconds
Focus Speed: 8 to 35 seconds
Iris Speed: 2 to 5 seconds
Electrical
Input voltage: 12VDC (maximum)
Normal Operating

Current at 8V : 60 ma Running
150 ma at stop (with clutch slipping)

ik




; ; 42 a
* i
& Zoom Lens Specifications (cont'd) ;
3i»! ?
Optical ‘
:§. Focal Length Range: 15~150mm 1
, Relative Aperture : £:2.5 :
,Z; Maximum Coverage !
4 Diameter : 15.9mm 3
g Field Angles : 12.5 to 2.5 degrees i
; ,% Lens Mount : 'C' (removable) ;
Pan-Tilt Drive Specifications 3
¥ ; Operational
Angular Travel: Pan: Q0 to 350 degrees

Tilt: + 90 degrees

Speed : Pan: 9 degrees/sec

Tilt: 4 degrees/sec

Electrical
é‘ Voltage : 24 VAC
Power : Pan 10VA

Tilt 45VA

Normal Operating: Pan: .4 Amp
Tilt: 1.8 Amp

Current




TABLE 5.2

SYSTEM SPECIFICATIONS FOR FULL RESOLUTION COMPUTER VIDEO
INTERFACE USING VIDICON CAMERA, MAGNETIC DISC, ANALOG
RECORDING AND TIME BASE EXPANSION AND COMPRESSION

Input Signal

Compatibility

Frame

US Television Std

No. of lines/frame

No. of fields/frame
Field rate

Line rate

Field time

Line time

Signal amplitude (nom.)

Memory

Storage media
Rotation speed

Disc control

Disc jitter (time base stability)
Video heads
Headsdown rpm
Head/disc velocity
Head flying height
Head gap

Track width

Max. no of tracks/in.
Storage method

Recording method
Recording sequence

Recording lockout time

E-E availability
Input/output impedance
Input/output signal levels

S/Hum ratio

EIA-RS-180A

525

2, interlaced
59.94 Hz

15734 KHz
16.6834 msec
63.5566 usec
1.0Vpp composite

6.5" video disc

3596.40 rpm
servocontrolled

< 500 nsec/rev

flying - 1 TV field/track
~ 3000 rpm

1000-1150 i.p.s.

8-12 uin.

40-50 uin.

0.015 in.

40

Wideband FM

Blanking @ 5.5mHz

Peak wht. @ 7.5 mHz
Saturated

1 frame erase

1 frame write

66.733 msec

During record mode only
75Q+ 5%, dc-5 mHz

1.0 Vpp composite, nominal

> 40 ap BB
PP
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Frame Memory (cont'd)

S/N ratio
Freq response
Tilt

"K"~-factor
Time base stability

Timebase Compandor Signal Processing

Technology
Input compatibility
Outputs available

No. of lines addressed
per field frame

No. of samples/line
Sample interval

Sampled active line time
Line access

Line throughput time

A/D,D/A resolution

High speed A/D converter clock
Timebase jitter correction method
Data encoded

Encode method

Encode rate

Datastream clock recovery method
Recovered reference freq.

Fast 2 line buffer memory
Capacity

Write clock - from Hi speed A/D
Read clock - to RAM

Slow 2 line buffer memory
Capacity

Write clock - from shift register
Read clock - to D/A converter

> 45 ap BB (unweighted)
ms

dc-3.0 mHz + 1ldb
dc-4.2 mHz + 3db
no2%
v 3%

< + 250 nsec, peak/field

Digital processing

10. Vpp analog comp video

1.0 Vpp analog LF video

8-bit digital video, 34.0908K
samples/sec

240/480

512

97.778 nsec

50,062 usec

Sequential or random

19.067 ms for 512 8-bit words

8-bit

10.22725 MHz

Parallel digital data track
Composite sync

Bi-phase, M

4.09090 MHz

PLL

2.04545 MHz

MOS shift register
1024x8 bits
10.22725 MHz
1.022725 MHz

MOS RAM
1024x8 bits
1.022725 MHz
34.0908 KHz
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TABLE 6.1 DEMONSTRATION OF SUCCESSFUL TRACKING OF LOCATION
OF DARK OBJECT
OBJECT AT POSITION 1 (See Figure 6.1 for illustration)

OBJECT

CBJECT

OBJECT

OBJECT

Coarse Position estimate at

After adjustment, fine estimate at

After adjustment, coarse estimate at
fine estimate at

After adjustment both estimates

return (0,0) - Object is centered.

AT POSITION 2

Coarse Position estimate at

After adjustment, fine estimate at
After adjustment, coarse estimate at
Fine position estimate at

After adjustment both estimates
return (0,0) -~ object is centered.

AT POSITION 3

Coarse Position estimate at

After adjustment fine estimate at
After adjustment both estimates
return (0,0) -~ object is centered.

AT POSITION 4

Coarse position estimate at

After adjustment fine estimate at

After adjustement, coarse estimate at
fine estimate at

After adjustment both estimates

return (0,0) ~ object is centered.

AT POSITION 5

Coarse position estimate at

After adjustment, fine estimate at
After adjustment, both estimates
return (0,0) - object is centered.

(23,-23)
(-11 7 )

(-23' 23)
(-4, -6)
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TABLE 6.1 (Cont'd)

OBJECT AT POSITION 6

y Coarse position estimate at (-2,0)
' After adjustemtne, fine estimate at (¢ 72,
After adjustment, coarse estimate at (=2,-2)
A After adjustment, fine estimate at (6,7)
. After adjustment, coarse estimate at ( 0,0)
. fine estimate at (0,5)
After adjustment, both estimates
return (0,0) - object is centered.
OBJECT AT POSITION 7 :
Coarse position estimate at (~17,-23)
After adjustment, fine estimate at (0, 0)
E ] coarse estimate at (23, -23)
‘ After adjustment, fine estimate at (o, 7)

After adjustment both estimates
return (0,0) - object is centered.

A
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TABLE 6.2

Recognized as

# of
Pattern
Presented 2

10
11

12

Numbers exhibited are coefficients of correlation yielded by

Associative Memory. Correct recognition is demonstrated by

!
|
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DEMONSTRATION OF SUCCESSFUL RECOGNITION OF
TANKS REGARDLESS OF ORIENTATION

Pattern #

1

ETY.)

23
852 1000

872 1128 1020

692
844

712

3

2

g 8
2 B E 8 %

3 2

900 1168
748

760

852 1072

T M

788

1156

896

844
948
876

88

692
T84
1008

976

1204
748

712
832

904

528 920 1016

7
1068

1016

780

1248
1000
1004

S64

580

8
884

872

3

g

1032
740
780

812

9
816

924

1072

596
476
876
764
1264
680

600

1064

1020

708

704

1288

1008

S32 804 S3% 912

i1 a2

764

720

-

712
697
1012

1220

™

968

704

700

972 1068

diagonal elements of array being the largest in any row.
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